Short description of 3 RTU optical labs

Friday, August 24, 2012

Data from Scientific Research Laboratory of Material Optics
Data from Scientific Research Laboratory of Semiconductor Physics
Data from Fiber Optics Transmission System laboratory

 

Data from Fiber Optics Transmission System laboratory

Head of laboratory:
Prof. Ģirts Ivanovs
Telephone: +3716708929
E-mail: Girts.Ivanovs@rtu.lv

Liaison persons:

Dr.sc.ing. Vjačeslavs Bobrovs
Telephone: +371 27896246
E-mail: Vjaceslavs.Bobrovs@rtu.lv

Dr.sc.ing. Jurģis Poriņš
Telephone: +371 26686622
E-mail: Jurgis.Porins@rtu.lv

Senior researchers:

Dr.sc.ing. Ģirts Ivanovs
Dr.sc.ing. Gunārs Lauks
Dr.habil.phys. Andris Ozols
Dr.sc.ing. Vjačeslavs Bobrovs
Dr.sc.ing. Gavars Pēteris
Dr.sc.ing. Jurģis Poriņš
Dr.sc.ing. Rolands Parts

Researchers:

Dr.phys. Jānis Teteris
Dr.phys. Māra Reinfelde
Dr.sc.ing. Jans Jeļinskis
Dr.sc.ing. Iļja Ļašuks
Ms.sc.ing. Oskars Ozoliņš
Ms.sc.ing. Andris Skrastiņš
Ms.sc.ing. Aleksejs Udaļcovs
Ms.sc.ing. Sandis Spolītis
Ms.sc.ing. Andis Supe
 

Research interests of:

  1. Mathematical modelling, design and implementation of fiber optics transmission systems;
  2. Spectral efficiency and minimal channel interval investigations of optical transmission systems;
  3. Nonlinear optical effects for optical transmission systems and nonlinear refractive index in optical fibers;
  4. Optical transmission systems for access networks: FTTx, WDM-PON, WDM-Direct;
  5. Optical passive components for filtering (Thin film filters, Fiber Bragg gratings, Arrayed waveguide gratings and others), Optical multiplexors and de-multiplexors;
  6. Diffractive holographic polarization de-multiplexers in organic material and Bragg reflection gratings in planar amorphous chalcogenide and array organic photorezistors;
  7. All optical wavelength converting and time division multiplexing.
  8. Analysing and Evaluation of Channel Interval in Wavelength Division Multiplexing Transmission Systems;
  9. Nonlinear Effects in Optical Fibers;

Current and past PhD thesis:

  1. Development and Research of High Speed Passive Optical Networks;
  2. Research and Evaluation of Fiber Optic Transmission Systems with High Spectral Efficiency;
  3. Nonlinear Refractive Index Measurements in Telecommunications Optical Fibre;
  4. Development of High-Speed Fiber Optic Transmission System;
  5. Evaluation and Optimization of Optical Band-Pass Filters for Wavelength Division Multiplexing;
  6. Heuristic algorithms for traffic management in WDM networks;
  7. Analysing and Evaluation of Channel Interval in Wavelength Division Multiplexing Transmission Systems;
  8. Nonlinear Effects in Optical Fibers;

Research projects:

  1. „Design of high speed optical access networks and elements”, Nr. 2010/0270/2DP/2.1.1.1.0/10/APIA/VIAA/002, ERAF;
  2. „Development of mixed fiber optical wavelength division multiplexing transmission system.”, Nr. FLPP-2011/15, RTU;
  3. „Investigation of nonlinear optical coefficient measurement method in FOTS”. Nr. ZP 2010, RTU;
  4. „Innovative research methods for mobile network coverage measurement”, no. FLPP 2011, RTU;
  5. „Next generation mixed optical wavelength division multiplexing system enforcement.”, Nr. EEZ09AP-42/09, EEZ grant.
  6. „Investigation of optical signal polarization state determination methods in FOTS.”, Nr. ZP2009/6, RTU;
  7. „New electronic communication technologies”, the National Research Programme deviation - The Telecommunications system safety and security, no. V7408.1, RTU;
  8. „Investigation of IP over WDM traffic grooming”, Nr. ZP 2008/16, RTU;
  9. „Investigation of traffic control in FTTH networks”, Nr. ZP 2007/13, RTU;
  10. „Investigation and metrology of advanced optical multiplexing elements”, Nr. U7104, RTU;
  11. „Ultra short pulse technologies for optical WDM systems”, Nr. 01.0844, LZP;
  12. „Evaluation of nonlinear optical effects in WDM systems”, Nr. R7214, RTU;
  13. „High-speed optical WDM systems development and evaluation.”, Nr. R7365, RTU;
  14. „The design and choice of the optical communication systems, their networks and elements”, Nr. 96.0490, LZP;
  15. „Investigation and usability of WDM transmission systems”, Nr. 01.0844, LZP.

Scientific equipment:

  1. Optical reflectometer: YOKOGAWA AQ7260;
  2. Optical spectrum analyser: ADVANTEST Q8384;
  3. Wavelength meter: EXFO WA-1150;
  4. Optical fiber fusion splicer: FUJIKURA FSM-50S;
  5. Laser sources: AGILENT TUNABLE LASERS 81989A, 81949A;
  6. Optical amplifiers: KEOPSYS EDFA BOOSTER; SPECTRA EDFA BOOSTER;
  7. Optical signal external modulators: AVANEX Mach-Zehnder modulators based on LiNbO3;
  8. Electrical signal quality analyser: ANRITSU MP1026A;
  9. Pulse pattern generator: ANRITSU PPG MP 1800A;
  10. 80 km G. 652.D ITU-T standard single mode fiber;
  11. Polarimeter THORLABS TXP5004;
  12. Polarization controller FIBERPRO MPC;
  13. Traffic generator and analyser AGILENT N2X;
  14. Routers and switches CISCO 2821, REPOTEC, MICROTIC ROUTERBOARD 33/130, for MPLS traffic engineering;
  15. Server DELL POWER EDGE SC 1435.

Latvia Patents:

  1. Nr. P-11-175, „Fiber Bragg gratting add-drop multiplexer with a fixed wavelenght”, 2011;
  2. Nr. LV-14440, „SS-WDM light source for PON”, 2011;
  3. Nr. LV-14296, „Nonlinear cefficient measurement scheme for telecommunication optical fiber”, 2010;
  4. Nr. LV-14262, „Combined wavelength division multiplexing transmission system”, 2010;
  5. Nr. LV-14107, „Wavelength division multiplexing transmission system with narrow-band filter”, 2009.

Latest publications:

  1. Ozoliņš O., Bobrovs V., Ivanovs Ģ. DWDM-Direct Access System Based on the Fiber Bragg Grating Technology // 8th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP’12): Proceedings in IEEExplore, 2012. - 35.-38. lpp.
  2. Xiong M., Ozoliņš O., Ding Y., Huang B., An Y., Ou H., Peucheret C., Zhang X. 41.6 Gb/s RZ-DPSK to NRZ-DPSK Format Conversion in a Microring Resonator // 17th OptoElectronics and Communications Conference (OECC 2012): Proceedings in IEEExplore, 2012. - 1.-2. lpp.
  3. Lali-Dastjerdi Z., Ozoliņš O., An Y., Cristofori V., Da Ros F., Kang N., Hu H., Hansen Mulvad H., Rottwitt K., Galili M., Peucheret C. Demonstration of Cascaded In-Line Single-Pump Fiber Optical Parametric Amplifiers in Recirculating Loop Transmission // Optics Express Proceedings, 2012. - xx.-xx. lpp.
  4. Lali-Dastjerdi Z., Ozoliņš O., An Y., Cristofori V., Da Ros F., Kang N., Hu H., Hansen Mulvad H., Rottwitt K., Galili M., Peucheret C. Demonstration of Cascaded In-Line Single-Pump Fiber Optical Parametric Amplifiers in Recirculating Loop Transmission // European Conference on Optical Communications (ECOC) 2012: Proceedings in IEEExplore, Nīderlande, Amsterdama, 16.-20. septembris, 2012. - xx.-xx. lpp.
  5. Poriņš J., Supe A., ‘‘Research of Optical Radiation Intensity in Erbium Doped Optical Fibers’’ // 8th IEEE, IET International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP 2012): Conference Proceedings 2012 (IEEE Xplore), Poland, Poznaņa, 18.-20. July, 2012. - pp 25-28.
  6. Porins J., Ivanovs G., Bobrovs V., Supe A. ‘‘Investigation of External Electromagnetic Disturbance in HDWDM System’’, Progress In Electromagnetics Research 2012, PIERS Proceedings, pp. 982 - 986., ISSN 1559-9450
  7. Poriņš J., Supe A., “Methods for Estimation of Optical Fiber Non-linearity Using Self-phase Modulation Effect” zinātniskajā žurnālā ’’Latvian Journal of Physics and Technical Sciences’’, Volume 48, Number 6/2011, pp. 29-40, ISSN 0868-8257
  8. Poriņš J., Bobrovs V., Supe A., “Evaluation of Effective Area of Erbium Doped Fibers” zinātniskajā žurnālā “Lithuanian Journal of Physics”, Vol. 52, No.1, pp. 19-23 (2012) ISSN 1648-8504
  9. Spolītis S., Bobrovs V., Ivanovs Ģ. Investigation of High-Speed AWG Filtered Spectrum-Sliced WDM PON System // 8th IEEE, IET International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP 2012): Conference Proceedings 2012 (IEEE Xplore), Poland, Poznaņa, 18.-20. July, 2012. - pp 21-24.
  10. Spolītis S., Bobrovs V., Berezins S., Ivanovs Ģ. Optimal Design of Spectrally Sliced ASE Seeded WDM-PON System // 15th International Telecommunications Network Strategy and Planning Symposium: Conference Proceedings 2012 (IEEE Xplore), Italy, Roma, 15.-18. October, 2012. - pp 1-5.
  11. Bobrovs V., Spolītis S., Ivanovs Ģ. Comparison of Chromatic Dispersion Compensation Techniques for WDM-PON Solution // 2nd Baltic Congress on Future Internet Communications (BCFIC 2012): IEEE Conference Proceedings: IEEE Xplore Digital Library, Lithuania, Vilnius, 25.-27. April, 2012. - pp 1-5.
  12. Bobrovs V., Spolītis S., Udaļcovs A., Ivanovs Ģ. Schemes for Compensation of Chromatic Dispersion in Combined HDWDM Systems // Latvian Journal of Physics and Technical Sciences. - 5. (2011) pp 13-27.
  13. Bobrovs V., Udaļcovs A., Trifonovs I. Investigation of Maximum Distance Reach for Spectrally Efficient Combined WDM Systems // 2nd Baltic Congress on Future Internet Communications (BCFIC 2012): IEEE Conference Proceedings: IEEE Xplore Digital Library, Lithuania, Vilnius, 25.April-27. May, 2012. - pp 1-5.
  14. Bobrovs V., Udaļcovs A., Trifonovs I. Investigation of Spectrally Eficient Transmission in Mixed WDM Systems // Progress in Electromagnetics Research Symposium (PIERS): Proceedings , Malaysia, Kuala Lumpur, 27.-30. March, 2012. - pp 977-981.
  15. Udaļcovs A., Bobrovs V. Investigation of Spectrally Efficient Transmission for Unequally Channel Spaced WDM Systems with Mixed Data Rates and Signal Formats // 8th IEEE, IET International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP) 2012: IEEE Conference Proceedings, Poland, Poznan, 18.-20. July, 2012. - pp 1-4.
  16. Ozoliņš O., Bobrovs V., Ivanovs Ģ., Ļašuks I. New-Generation Optical Access System Based on the Thin Film Filter Technology // International Journal of the Physical Sciences. - 6(35), (2011), pp. 7926-7934, ISSN 1992-1950.
  17. Ozoliņš O., Bobrovs V., Ivanovs Ģ. Efficient Bandwidth of 50 GHz Fiber Bragg Grating for New-Generation Optical Access // 19th IEEE TELFOR Proceedings. - (2011), pp. 816-819, ISBN 978-1-4577-1500-6.
  18. Udaļcovs A., Bobrovs V., Ivanovs Ģ. Investigation of Differently Modulated Optical Signals Transmission in HDWDM Systems // Computer Technology and Applications by David Publishing Company, Inc. USA. - Vol.2, No.10. (2011), pp. 801-812, ISSN 1934-7332.
  19. Udaļcovs A., Bobrovs V. Investigation of Spectrally Efficient Transmission for Differently Modulated Optical Signals in Mixed Data Rates WDM Systems // IEEE Swedish Communication Technologies Workshop (Swe-CTW) Conference Proceedings. - (2011), pp. 7-12, ISBN 978-1-4577-1878-6.
  20. Bobrovs V., Ivanovs Ģ., Udaļcovs A., Spolītis S., Ozoliņš O. Mixed Chromatic Dispersion Compensation Methods for Combined HDWDM Systems // BWCCA IEEE CPS Proceedings. - (2011), pp. 313-319, ISBN 978-0-7695-4532-5.
  21. Ivanovs Ģ., Spolītis S. Extending the Reach of DWDM-PON Access Network Using Chromatic Dispersion Compensation // IEEE Swedish Communication Technologies Workshop Conference Proceedings 2011. - (2011), pp. 29-33, ISBN 978-1-4577-1878-6.
  22. Ozoliņš O., Bobrovs V., Ivanovs Ģ. Efficient Bandwidth Measurements of Fiber Bragg Gratings for Next-Generation Optical Access // Optics & High Technology Material Science SPO 2011 Scientific Works. - (2011), pp. 233-234.
  23. Udaļcovs A., Bobrovs V. Investigation of Error-Free Transmission for High Density Combined WDM Systems // Optics & High Technology Material Science SPO 2011: Scientific Works. - (2011), pp. 211-212.
  24. Ozoliņš O., Bobrovs V., Ivanovs Ģ. DWDM-Direct System with FBG Technology for New-Generation Optical Access // IEEE Swedish Communication Technologies Workshop (Swe-CTW) booklet of abstracts. - (2011), pp. 10-10.
  25. Bobrovs V., Spolītis S., Udaļcovs A., Ivanovs Ģ. Schemes for Compensation of Chromatic Dispersion in Combined HDWDM Systems // Latvian Journal of Physics and Technical Sciences. - 5. (2011), pp. 13-27, ISSN 0868-8257.
  26. Spolītis S., Ivanovs Ģ. Performance Evaluation of WDM and TDM Passive Optical Networks // Optics & High Technology Material Science SPO 2011 Scientific Works. - (2011), pp. 215-216.
  27. Ozoliņš O., Bobrovs V., Ivanovs Ģ. Efficient Bandwidth Measurements of Thin Film Filters for Next-Generation Optical Access // PGNet2011 Conference Proceedings. - (2011), pp. 275-280, ISBN 978-1-902560-25-0.
  28. Jurgis Porins, Vjaceslavs Bobrovs and Girts Ivanovs, Realization of HDWDM Transmission System with the Minimum Allowable Channel Interval Optical Communications Systems, ISBN: 978-953-51-0170-3- Rijeka, Croatia : INTECH, 2012. - 274 lpp (http://www.intechopen.com/books/optical-communications-systems).

Telecommunications Institute webpage:
http://ti.rtu.lv/en/contacts.html

Telecommunications institute in social networks:
http://www.facebook.com/rtutelekomunikaciju.instituts
http://www.youtube.com/user/TelekomInstituts

top
 

Data from Scientific Research Laboratory of Material Optics

Head of Laboratory:
Professor, Dr.habil.phys. Andris Ozols
Telephone: +371-67089456
E-mail: Andris.Ozols@rtu.lv

Short description:

Scientific Research Laboratory of Material Optics (SRLMO) is a sientific unit acting within Institute of Technical Physics, Faculty of Material Science and Applied Chemistry of Riga Technical University.

Its address:
Faculty of Material Science and
Applied Chemistry, Riga Technical University,
Azenes iela 14/24, LV-1007, Riga,
Latvia.

The main goal of SRLMO is to develop new materials for holography and nonliner optics in cooperation with chemists of our Faculty. The permanent staff of laboratory includes three senior researchers but regularly two or three students are elaborating their Ph.D, master or bachelor work
 

Senior researchers:

Dr.habil.phys. Andris Ozols
Dr.phys. Peteris Augustovs
Dr.phys. Dmitry Saharov
 

Research directions:

  1. Holographic and optical characterization of materials.
  2. Dynamic holography including hologram self-enhacement and four-wave mixing.
  3. Polarization holography.
  4. Picosecond pulse propagation in optical fibres.

Current and past PhD thesis:

  1. Jurgis Porins. Nonlinear effects in optical fibres.
  2. Dmitry Saharov. Dynamic holograms in amorphous semiconductors and azobenzene oligomers.
  3. Aleksandrs Belajevs. Scalar and vector holographic gratings in azobenzene compounds.

Current research projects with the participation of SRLMO:

  1. Latvian Science Council Project „Physical Processes in Multilayer and Multicomponental Structures”.
  2. Latvian State Program ”Development of innovative multifunctional materials, signal processing and information technologies for competitive products with high scientific capacity”.
  3. „Design of high speed optical access networks and elements”, Nr. 2010/0270/2DP/2.1.1.1.0/10/APIA/VIAA/002, ERAF.

Scientific equipment:

  1. Two holographic setups on vibration-free optical tables.
  2. Picosecond laser spectrometer.
  3. YAG:Nd3+ KLASTECH DENICAFC 532-300 laser.
  4. He-Ne laser LGN-222.
  5. He-Ne laser Melles Griot 25LHP928-230.
  6. YVO4:Nd3+ laser Picotronic DD532-50-5.
  7. Six Picotronic laser diode lasers.

Latest articles

  1. A.Ozols, V.Kokars, P.Augustovs, I.Uiska, K.Traskovskis, G.Mezinskis, A.Pludons, D.Saharov. Polarization dependence of holographic recording in glassy azocompounds. Lithuanian J.of Phys., 2010, vol.50, No1, pp.17-25.
  2. A.Ozols, V.Kokars, P.Augustovs, K.Traskovskis, G.Mezinskis, A.Pludons. Green and red laser holographic recording in different glassy azocompounds. Optical Materials, 2010, vol.32,pp.811-817.
  3. A.Ozols, D.Saharov, V.Kokars, V.Kampars, A.Maleckis, G.Mezinskis, A.Pludons. Holographic recording of surface relief gratings in stilbene azobenzene deriavatives at 633 nm. Journ. of Physics:Conference Series, 2010, vol.249, No1,doi: 10.1088/1742-6596/249/1/012055.
  4. A.Ozols, V.Kokars, P.Augustovs, I.Uiska, K.Traskovskis, D.Saharov. Effect of light polarization on holographic recording in glassy azocompounds and chalcogenides. Centr. European J.Phys., 2011, vol.9, No2, pp.547-552.
  5. K.Traskovskis, V.Kokars, A.Ozols, P.Augustovs. Synthesis and properties of new glassy molecular and oligomer azocompounds suitable for holographic recording. Advanced Materials Research, 2011, vol.22-2, pp.267-270. Online: www.scientific.net, doi:10.4028/www.scientific.net/AMR.222.267.
  6. E.Zarins, V.Kokars, A.Ozols, P.Augustovs. Synthesis and properties of 1,3-dioxo-1+1-inden-2(3H)-ylidene fragment and (3-(dicyanomethylene)-5,5-dimetilcyclohex-1-enyl)vinyl fragment containing derivatives of azobenzene for holographic recording materials. Proc.SPIE, vol.8074, 8074E1-6(2011); doi:10.1117/12.886598.
  7. A.Ozols, P.Augustovs, D.Saharov. Recording of holographic gratings and their coherent self-enhacement in an a-As2S3 film with a minimum light intensity modulation. Lithuanian Journ. Of Physics, 2012, vol.52, No1, pp.10-18.
  8. A Ozols, V Kokars, P Augustovs, K Traskovskis, and D Saharov. Holographic studies of photoinduced anisotropy in molecular glassy films containing diphenylamine azochromophores. Journal of Physics: Conference Series, 2012, accepted for publication.

top
 

Data from Scientific Research Laboratory of Semiconductor Physics

Head of laboratory:
Prof. Arturs Medvids
Telephone: +37167089445
E-mail: medvids@latnet.lv

Liaison person:
Prof. Arturs Medvids
Telephone: +37167089445
E-mail: medvids@latnet.lv

Senior researchers:
Dr.habil.Phys. Arturs Medvids
Dr.Phys. Aleksandr Mychko
Dr.Phys. Pavels Onufrijevs

Researchers
:
Dr.habil.Phys. Talivaldis Puritis
Scientific Assistants:
Mg.sc.ing. Edvins Dauksta
Bc.sc.ing. Gatis Mozolevskis

Research interests of:

  1. investigation of the semiconductors: Si, Ge, GeSi/Si, InSb, Te, CdTe, CdZnTe, SiC and ZnO under nonequilibrium conditions in nonhomogeneous electric;
  2. Magnetic and temperature fields;
  3. Transport process in semiconductors, metal (CoSi2) and dielectrics (SiO2, Si3N4);
  4. Interaction of laser beam with solid state materials;
  5. Nanostructures formation on a surface of semiconductors by laser radiation.

Current and past PhD thesis:

  1. Surface modification of a semiconductors by laser radiation (A. Michko)
  2. Surface nanostructures of Si, Ge and SiGe Semiconductors formed by laser radiation (P. Onufrijevs).
  3. Mechanism of powerful laser radiation interaction with semiconductors (E. Dauksta).
  4. Mechanism of nano- and microstructures formation mechanism by laser radiation on a surface of semiconductors (G. Mozolevskis).

Research projects:

  1. „NANOSTRUCTURED CdTe SOLAR CELLS”ERA-NET (MATERA+) project with an additional EC FP7 financial support for the projects. (2011-2014)
  2. “Cooperation across Europe for Cd(Zn)Te based Security instruments, COCAE”, a FP7 project, with seven European participants (2008-2012);
  3. Taiwan-Lithuania-Latvia Project: “Studies on Nitride and Oxide Semiconductor Nanostructures for Energy Technology Applications” Program on Mutual Funds for the Scientific Co-Operation of Republic of Lithuania and Republic of Latvia with Republic of China (Taiwan) (2009-2011);
  4. Riga Technical University Project: Investigation of Mechanism of Nanostructure Formation on a surface of p- and n- type Si by Laser Radiation, (2010-2011).
  5. Riga Technical University Project: Elaboration of Light-Emitting Diode Based on Si Nanotechnology (2009-2010).
  6. Riga Technical University Project: Technology of Porous Formation in Semiconductors by Powerful Laser Radiation, (2008-2009).
  7. Cooperation programme between Latvia and Belarus. Elaboration of method for selfassembled nanostructures formation on Si and SiGe solid solution surface by powerful laser irradiation for use in electronics and optoelectronics devices (2007.-2009.g.)
  8. Ministry of Education and Science Republic of Latvia and Riga Technical University Project, Investigation of radiation defects generation and redistribution in semiconductors, (2007).
  9. Ministry of Education and Science Republic of Latvia and Riga Technical University Project, Decrease of K factor in SiO2 glass by YAG:Nd laser radiation, (2006).

 Scientific equipment:

  1. Spectrophotometer: Shimadzu - SolidSpec-3700;
  2. Nd:YAG pulsed laser –Ekspla NL301G (pulse duration τ1=6 ns, wavelengths: λ1=1064 nm, λ2= 532 nm and λ4=266 nm;
  3. Nd:YAG pulsed laser –LTIPC-8 (pulse duration tau1=15 ns, wavelengths: λ1=1064 nm, λ2= 532 nm;
  4. CO2 pulsed laser (pulse duration t=10ns, wavelength λ=10.6mm, power P=5MW); 5. FTIR Spectrometer - BRUKER, Vertex 70;
  5. Optical microscope - Nikon LV150;
  6. I-V characteristics set in magnetic field till B=0.3 T;

For the listing of the patents, please click here

Latest publications:

  1. P. Onufrijevs, T. Serevicius, P. Scajev, G. Manolis, A. Medvids, L. Chernyak, E. Kuokstis, C.C. Yang and K. Jarasiunas. ”Characterization of Optical and Photoelectrical Properties of ZnO Crystals” ACTA PHYSICA POLONICA A , Vol. 119, N.2, pp.274-276, 2011.
  2. Artur Medvid', Pavels Onufrijevs, Edvins Dauksta, Volodymyr Kyslyi. “Black Silicon” Formation by Nd:YAG Laser Radiation”, Advanced Materials Research, Vol. 222, pp. 44-47, 2011.
  3. A. Mychko, Artur Medvid', Janis Barloti, Yu. Naseka. „Influence of Laser Radiation on Optical Properties and Surface Structure of CdZnTe Crystal”, Advanced Materials Research, Vol. 222, pp.130-133, 2011.
  4. Pavels Onufrijevs, Artur Medvid', Edvins Dauksta, Tina Trautnitz, Decrease of Point Defect Concentration at a Surface of ZnO/Si Heterostructure by Powerful Laser Radiation, Advanced Materials Research, Vol. 222, pp.158-161, 2011.
  5. Artur Medvid', Pavels Onufrijevs, Edvins Dauksta, Janis Barloti, Alexander G. Ulyashin, Igor Dmytruk, Iryna Pundyk. „ P-N Junction Formation in ITO/p-Si Structure by Powerful Laser Radiation for Solar Cells Applications”, Advanced Materials Research, Vol. 222, pp.225-230, 2011.
  6. Darius Dobrovolskas, Juras Mickevicius, VidaKazlauskiene, Juozas Miškinis, Edmundas Kuokštis, GintautasTamulaitis, PavelsOnufrijevs, Arturs Medvids, Jeng-JieHuang, Chih-Yen Chen, Che-HaoLiao, C.C.Yang.” Influence of laser annealing on defect-related luminescence of InGaN epilayers”, Journal of Luminescence, Vol. 131, Issue 7, pp.1322-1326, 2011.
  7. D. Kropman, E. Mellokov, T.Kärner, T.Laas, A.Medvid’, P.Onufrijevs, E.Dauksta. „Stres relaxation mechanism by strain in the Si-SiO2 system and its influence on the interface properties”, Solid State Phenomena, Vols.178-179, pp.259-262, 2011.
  8. A.Medvids, P.Onufrijevs, A.Mychko, ”Properties of Nanocones Formed on a Surface of Semiconductors by Laser Radiation: Quantum Confinement effect of Electrons, Phonons and Excitons” Nanoscale Research Letters, Vol. 6. pp 582-588, 2011.
  9. A. Medvid’, P. Onufrijevs, K. Lyutovich, M. Oehme, and E. Kasper.” Nano-Cones Formation on a Surface of Si, Ge Crystals and Si1

Institute of Technical Physics webpage:
http://www2.ktf.rtu.lv/TFI/

top